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1. Introduction

Let Φ be a reduced irreducible root system and R be a commutative
ring. We consider the corresponding simply connected Chevalley group G =
G(Φ, R) and its elementary subgroup E(Φ, R). When rk(Φ) ≥ 2 it is proven
by Suslin and Kopeiko [17], [18], [11] for the classical cases and by Taddei
[20] for the exceptional cases, that E(Φ, R) is normal in G(Φ, R), so that
one can consider the K1-functor modeled on G:

K1(Φ, R) = G(Φ, R)/E(Φ, R),

see references in [15], [25], [13]. Observe that this functor is a generalisation
of SK1 rather than the usual K1. Namely, SL(l + 1, R) is the Chevalley
group of type Al and K1(Al, R) = SK1(l + 1, R).

It is well known that when R is a field, or, more generally a semi-local
ring, the functor K1(Φ, R) is trivial, or, in other words, G(Φ, R) = E(Φ, R)
(see, for example, [2]). In the stable range, i.e. when rk(Φ) is large with
respect to the dimension of R, the functor K1(Φ, R) is abelian. The present
paper is an attempt to understand what can be said about K1(Φ, R) in the
meta-stable range, when dimension of R is large. There are examples due
to van der Kallen and Bak [9], [3] which show that non-stable K1(Φ, R) can
be non-abelian, and the natural question is how non-abelian it can be?

In [3], Bak, developed a beautiful localisation-completion method which
allowed him to prove that SK1(n,R) is nilpotent, and, more generally,
K1(n,R) is nilpotent-by-abelian when Bass-Serre dimension δ(R) of the
ground ring R is finite. Recall that a group H is called nilpotent-by-abelian,
if it has a normal subgroup F such that F is nilpotent and H/F is abelian.
This clearly implies that H is a solvable group.

In [7] the first author uses the same method to extend this result to non-
stable K1 of general quadratic groups. Classical Chevalley groups fall into
this category and it follows from the results of [7] that K1 are nilpotent
for Chevalley groups of types Cl and Dl. In fact, [7] establishes much more
general results, namely that certain slightly larger K1-functors are nilpotent-
by-abelian for a huge class of unitary groups over form rings.

Here we show that the same holds for all Chevalley groups. More precisely,
the main result of the present work is a construction of a descending central
series in the Chevalley group, indexed by the Bass-Serre dimension of the
factor-rings of the ground ring. In the case of finite-dimensional rings this
leads to the following theorem, which we prove in Section 7.
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Theorem. Let Φ be a reduced irreducible root system of rank ≥ 2 and R be a

commutative ring such that its Bass-Serre dimension δ(R) is finite. Then for

any Chevalley group G(Φ, R) of type Φ over R the quotient G(Φ, R)/E(Φ, R)
is nilpotent-by-abelian. In particular K1(Φ, R) is nilpotent of class at most

δ(R) + 1.

A special case of this result pertaining to the case when R = RX or CX

is the ring of all continuous real or complex-valued functions on a finite-
dimensional topological space X was stated by Vaserstein in [24], Theo-
rem 7. This theorem is accompanied by the following proof, which we re-
produce verbatim: “Proof, using the Bruhat decomposition is the same as
for GLn(A).”

Our principal tool is the localisation-completion method of [3] and [7], and
we refer the reader to these papers and [4] for more background information
and details. Since this method is not as popular as some other techniques
and the body of our paper consists of calculations, we take our breath for the
moment and explain what really goes on here and how this method stands
to other major methods which are used to attack similar problems. To avoid
some additional technical complications and present ideas in their simplest
form, assume for the time being that G(Φ, R) is simply connected.

Informally the theorem above may be viewed as an extremely strong form
of normality of E(Φ, R) in G(Φ, R). In fact, normality asserts that for any
elementary generator xα(a) and any g ∈ G one has [xα(a), g] ∈ E(Φ, R).
On the other hand our theorem asserts that for finite-dimensional rings
something terribly much stronger occurs, namely [. . . [[g1, g2], g3], . . . , gm] ∈
E(Φ, R) for any sufficiently long sequence g1, g2, . . . , gm ∈ G. Of course, in
view of the fact that E(Φ, R) is perfect this implies normality of E(Φ, R).

Now for arbitrary1 commutative2 rings we are aware of five major notice-
ably different ways to prove such results:

• Suslin’s direct factorisation method [17], [18], [11], [8];

• Suslin’s factorisation and patching method [22], [10], [5];

• Quillen–Suslin–Vaserstein’s localisation and patching method, [17], [23],
[20], [19];

• Bak’s localisation-completion method [3], [7], [4];

• Stepanov–Vavilov–Plotkin’s decomposition of unipotents [25], [27], [16],
[26].

Suslin’s first method and decomposition of unipotents are based on re-
duction to groups of smaller rank over the same ring. On the other hand,
localisation and patching and localisation-completion are based on reduction
to groups of the same type over rings of smaller dimension. Of course, here

1There are, of course, many further methods, which only work for some classes of rings,
most notably, methods using stability conditions, as developed by Bass, Bak, Dennis, van
der Kallen, Stein, Suslin, Vaserstein, and others. There are some further methods, which
use topological or metric properties of R, or other similar structures. We do not try to
survey such methods here.

2There are numerous generalisations and ramifications of these methods for non-
commutative rings, including the very powerful Golubchik-Mikhalev non-commutative
localisation methods, see references in [25], [5], [16], which we do not discuss here, since
we are only interested in commutative rings.
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too one has to invoke reduction to a smaller rank at some stage, but the
only such reduction there is, occurs at the level of zero-dimensional rings,
is classically known and remains invisible to the reader. For example, the
only reduction to groups of smaller rank which is ever used in the present
paper, appears under the disguise of Gauß decomposition over semi-local
rings. Suslin’s second method combines reduction in dimension and rank.
Sometimes these methods are simultaneously used in the same proof, as in
[14], which brings into action the combined force of localisation-completion
and decomposition of unipotents to obtain length bounds which would be
beyond reach of either of these methods individually.

Decomposition of unipotents is a generalisation of Suslin’s first method.
It is very powerful and extremely straightforward at the same time. When it
can be applied, it usually gives by far the best results algorithmically. What
you should expect to get in our problem, would be an explicit polynomial
formula, expressing [. . . [[g1, g2], g3], . . . , gm] as a product of elementary root
unipotents xα(a) with parameters a depending polynomially on the matrix
entries of gi’s in a faithful representation of G. Now everybody, who has
seen, how such a formula looks like for the commutator [xα(a), g] with one

general matrix g ∈ G for the classical groups in vector representations,
[11], [12], [25], [16], or for the groups of types E6 or E7 in micro-weight
representations, [25], [27], [26], would immediately recognise, that writing a
similar formula for our problem was not an option.

The other three methods are very similar in spirit, they are all based
on localisations and partitions of 1 in the ground ring. The real difference
is in how they address zero divisors. The relation between Suslin’s second
method and localisation and patching is exactly the same as the relation
between Suslin’s and Quillen’s solutions of Serre’s problem. Both methods
are well documented in the existing literature. This is especially true for
localisation and patching which was used in dozens of papers published
by Suslin, Kopeiko, Tulenbaev, Abe, Vorst, Vaserstein, Taddei, Li Fuan,
and many others. The key feature of localisation and patching is throwing
in independent variables to fight zero divisors and then applying Quillen’s
theorem [17].

In [3] Bak proposed yet another version of localisation, which does not
require passage to a polynomial ring, but operates in R itself. The char-
acteristic feature of this method is reduction to Noetherian rings, where
one can easily control the behaviour of zero divisors. The main idea of the
method, once you get it, is exceedingly simple. Unfortunately, [3] doesn’t
constitute an easy reading, since it throws in all possible technical com-
plications simultaneously: non-commutativity, explicit bounds for lengths,
second localisation, completion, and more. The crux of the method is buried
somewhere in the proof of Lemma 4.11 in the depth of Section 4. And as
the final blow, which was especially frustrating for the second author, the
notation in [3] fails to clearly distinguish between an element of g ∈ G and
its images under localisations – and at some point in the proof one has to
look at the images of g in four different localisations.

We believe that the method introduced in [3] is so natural and important,
that it deserves a much better publicity, and one of our broader intentions in
writing this paper was to give it the credit it truly deserves. To explain the
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essence of the method, below we reproduce what we believe is the shortest
existing proof for the normality of E(Φ, R) in G(Φ, R). In what follows
we denote by FM : R −→ RM the localisation homomorphism modulo a
maximal ideal and by Fs : R −→ Rs the localisation homomorphism with
respect to s ∈ R.

We wish to prove that for any g ∈ G, any α ∈ Φ and any a ∈ R one
has x = gxα(a)g−1 ∈ E(Φ, R). As typical for localisation proofs, we use
partitions of 1. In other words, we have to pick up b1, . . . , br ∈ R such that
1 = b1 + . . .+ br and each of gxα(bia)g−1 already lies in E(Φ, R). Of course,
the difference between various localisation methods is in how one chooses
such a partition. The following paragraph is a friendly takeover of a theme
of Bak, [3], Lemma 4.11.

Since the functors G(Φ,−) and E(Φ,−) commute with direct limits and R
is a direct limit of its finitely generated subrings, we can from the very start
reduce to the case when R is Noetherian. Fix a maximal ideal M ∈ Max(R).
Since for local rings E coincides with G, one has FM (g) ∈ E(Φ, RM ). Since
RM is the direct limit of Rt, t ∈ R \M , there exists such an s ∈ R \M , that
Fs(g) ∈ E(Φ, Rs). We will search for a bi of the form sl for a sufficiently
large exponent l. Set y = gxα(sla)g−1. The ring Rs being Noetherian,
for a large power of s, say for sn, the restriction of Fs to the principal
congruence subgroup G(Φ, R, snR) is injective. Since Fs(g) ∈ E(Φ, Rs), by
the Chevalley commutator formula there exists a higher power of s, say, sl,
l ≥ n, such that Fs(y) = Fs(g)Ft(xα(sla))Fs(g)−1 can be expressed as a
product

∏
xβi

(Fs(s
nci)), i = 1, . . . ,m. Take the product z =

∏
xβi

(snci),
i = 1, . . . ,m. By the very definition z ∈ E(Φ, R) and Fs(y) = Fs(z). On
the other hand, since G(Φ, R, snR) is normal in G(Φ, R), one has y, z ∈
G(Φ, R, snR). Thus y = z ∈ E(Φ, R). Since sl /∈M and the same works for
all maximal ideals, we get the desired partition.

There was no completion so far, only localisation, but this is not the end
of the story. Bak’s method was developed to prove much stronger results,
than normality, and that’s how completion enters the stage. For suppose
we have to prove that x = [h, g] lies in E(Φ, R) for two general matrices h
and g. Actually, this is exactly what we have to verify in the proof of the
above Theorem, not over R itself though, but over its factor-rings. This
cannot be easily done by a single localisation. The main idea in the proof
of [3] Theorem 4.1, embodied in Theorem 4.16, is to use localisation in
an element t, to prove that there exists an element s such that Fs(h) ∈
E(Φ, Rs), whereas g ∈ E(Φ, R)G(Φ, R, smR) for an arbitrarily large power
m. In other words, the element h becomes elementary after localisation in s,
whereas g becomes elementary after s-completion, which explains the name
localisation-completion. Then we can argue exactly as above, by the second

localisation in the element s. Namely, Fs(h) is elementary, and, taking a
sufficiently large power sm in the congruence for g, we can guarantee that
even with all the denominators in Fs(h), enough s’s survive for Fs(x) to
be in the image of E(Φ, R, snR) for an n such that restriction of Fs to
G(Φ, R, snR) is injective.
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Of course our actual proof is technically somewhat more demanding. In
general there is an extra toral factor to take care of3 and one has to fiddle
with the Chevalley commutator formula a bit to convince herself that she still
has large powers of both s and t in the numerator, after all conjugations.
But these are details, all the ideas are already there. The paper [7] uses
essentially the same ideas, but there are some further technical moments, like
non-commutativity, non-triviality of the involution and the form parameter
which make calculations in [7] much harder that the ones of the present
paper.

The details of our calculations look slightly differently for the non-sym-
plectic and the symplectic case, i.e. when Φ 6= Cl or Φ = Cl respectively
(recall that B2 = C2 is symplectic!) and for symplectic case the analysis
of the simply-connected group is somewhat easier than the analysis of the
adjoint group. By skipping symplectic case altogether we could both spare
a page or two of calculations and obtain somewhat better bounds in some
of the auxiliary results. Unfortunately this couldn’t have been done, if we
wish to have our theorem for all groups. In fact, the paper [7] by the
first author supplies all the details for the more general case of unitary
groups over a form ring. However it does so only in vector representations.
Symplectic groups Gsc(Cl, R) = Sp(2l, R) are obtained as a special case from
the general quadratic setting of [7] when the involution is trivial, λ = −1
and Λ = R. However the adjoint symplectic case Gad(Cl, R) = PGSp(2l, R)
requires some extra care.

The rest of the paper is organised as follows. In § 2 we introduce some
notation and in §§ 3,4 prove several easy lemmas on commutators. In § 5
we prove a patching result, which in particular provides a shorter proof of
Taddei’s theorem. In § 6 we introduce the last important ingredient of the
proof, completion. Finally, main results are established in § 7.

The main stimulus to undertake this work was a discussion with Benson
Farb, who mentioned that solvability of the K1 functor would have very
important geometric consequences. We would like to thank Alexei Stepanov
for careful reading of our original manuscript and some very illuminating
comments. The second author gratefully acknowledges support of the RFFI
projects 98-01-00825 and 00–01–00441.

2. Preliminaries

2.1. Let us fix some notation. Let R be a commutative ring with 1, S be
a multiplicative system in R and S−1R be the corresponding localisation.
We will mostly use localisation with respect to the two following types of
multiplicative systems. If s ∈ R and the multiplicative system S coincides
with 〈s〉 = {1, s, s2, . . . } we usually write 〈s〉−1R = Rs. If M ∈ Max(R) is a
maximal ideal in R, and S = R \M , we usually write (R \M)−1R = RM .
We denote by FS : R −→ S−1R the canonical ring homomorphism called
the localisation homomorphism. For the two special cases mentioned above,
we write Fs : R −→ Rs and FM : R −→ RM , respectively. When we write

an element as a fraction, like a/s or
a

s
we always think of it as an element

3Actually, there is exactly one case, when the toral factor plays a role: long roots in
adjoint symplectic groups.
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of some localisation S−1R, where s ∈ S. If s were actually invertible in R,
we would have written as−1 instead.

2.2. Let as above Φ be a reduced irreducible root system, P , Q(Φ) ≤ P ≤
P (Φ) be a lattice between the root lattice and the weight lattice. We de-
note by G = GP (Φ, R) the Chevalley group of type (Φ, P ) over R, by
T = TP (Φ, R) – a split maximal torus and by E = EP (Φ, R) the corre-
sponding (absolute) elementary subgroup. Usually P does not play role in
our calculations and we suppress it in the notation. The elementary group
E = E(Φ, R) is generated by all root unipotents xα(a), α ∈ Φ, a ∈ R,
elementary with respect to T . The subgroup E being normal in G means
exactly that E does not depend on the choice of T .

For any Φ, P assignments R −→ X(Φ, R), where X = G,T,E, de-
fine functors from commutative rings to groups, i.e. to a ring homomor-
phism φ : R1 −→ R2 there corresponds a natural group homomorphism
X(φ) : X(Φ, R1) −→ X(Φ, R2), which we usually denote by the same
letter φ, rather than by their official names G(φ), T (φ) and E(φ). For
E this is obvious, it is enough to define φ on elementary generators by
φ(xα(a)) = xα(φ(a)), whereas G and T are by the very construction affine
group schemes, i.e. representable functors from rings to groups. In fact E
is a subfunctor of G in the sense that the restriction of G(φ) to E(Φ, R)
coincides with E(φ). In particular, if S is a multiplicative system in R, the
localisation homomorphism FS : G(Φ, R) −→ G(Φ, S−1R) maps E(Φ, R)
inside E(Φ, S−1R).

2.3. The property of these functors which will be crucial for what follows is
that they commute with direct limits. In other words, if R = lim−→Ri, where
{Ri}i∈I is an inductive system of rings, then X(Φ, lim−→Ri) = lim−→X(Φ, Ri).
We will use this property in the following two situations. First, let Ri be
the inductive system of all finitely generated subrings of R with respect to
the embeddings. Then X(Φ, R) = lim−→X(Φ, Ri), which reduces most of the
proofs to the case of Noetherian rings. Second, let S be a multiplicative sys-
tem in R and Rs, s ∈ S, the inductive system with respect to the localisation
homomorphisms: Ft : Rs −→ Rst. Then X(Φ, S−1R) = lim−→X(Φ, Rs), which
allows to reduce localisation in any multiplicative system to localisation in
one element.

2.4. Let a be an additive subgroup of R. Then E(Φ, a) denotes the subgroup
of E(Φ, R) generated by all elementary root unipotents xα(t) where α ∈ Φ
and t ∈ a. Further, let L denote a nonnegative integer and let EL(Φ, a) de-
note the subset of E(Φ, a) consisting of all products of L or fewer elementary
root unipotents xα(t), where α ∈ Φ and t ∈ a. Thus E1(Φ, a) is the set of all
xα(t), α ∈ Φ, t ∈ a. When a E R is a proper ideal in R, the group E(Φ, a)
shouldn’t be confused with the (relative) elementary group E(Φ, R, a) of
level a. By definition E(Φ, R, a) is the normal closure of E(Φ, a) in E(Φ, R).
In general E(Φ, R, a) is not generated by elementary transvections of level
a. We use the following easy fact on the interrelation of E(Φ, a) with the
relative elementary groups, see, for example, [21], Proposition 2.
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Lemma 2.5. Suppose a E R is an ideal in R. In the case Φ 6= Cl one has

E(Φ, a) ≥ E(Φ, R, a2). In the case Φ = Cl one has E(Φ, a) ≥ E(Φ, R, ((2)+
a)a2).

2.6. If a E R is an ideal in R, then we denote by G(Φ, R, a) the principal
congruence subgroup of level a in G(Φ, R), i.e. the kernel of the reduction
homomorphism modulo a: G(Φ, R) −→ G(Φ, R/a). Clearly, E(Φ, a) ≤
G(Φ, R, a). Further, set T (Φ, R, a) = T (Φ, R) ∩G(Φ, R, a). Fix an ordering
on Φ, let Φ+ and Φ− be the corresponding sets of positive and negative
roots, respectively. As usual, we set

U(Φ, a) =
〈
xα(a), a ∈ a, α ∈ Φ+

〉

U−(Φ, a) =
〈
xα(a), a ∈ a, α ∈ Φ−

〉

Obviously, U(Φ, a), U−(Φ, a) ≤ E(Φ, a).

Our reduction to groups of smaller rank is based on the following version
of Gauß decomposition, see [1], Corollary 3.3 and [2], Proposition 2.3.

Lemma 2.7. If a is an ideal of R contained in the Jacobson radical, then

we have

G(Φ, R, a) = U(Φ, a)T (Φ, R, a)U−(Φ, a).

2.8. Let R∗ be the multiplicative group of the ring R. For α ∈ Φ and
a ∈ R∗ one sets wα(a) = xα(a)x−α(a−1)xα(a) and hα(a) = wα(a)wα(−1).
Let H(Φ, R) be the subgroup of T (Φ, R) generated by all hα(a):

H(Φ, R) =
〈
hα(a), a ∈ R∗, α ∈ Φ

〉

The following formula (see [1], Section 2.2)

hα(a) = x−α(a−1 − 1)xα(1)x−α(a− 1)xα(−1)xα(1− a−1)

shows that hα(a) ∈ E(Φ, R, a) if a ≡ 1 (mod a). In particular, H(Φ, R) =
T (Φ, R) ∩E(Φ, R).

It is shown in [2] that Lemma 2.7 immediately implies

Lemma 2.9. Let R be semi-local. Then G(Φ, R) = E(Φ, R)T (Φ, R). In

particular,

G(Φ, R)/E(Φ, R) = T (Φ, R)/H(Φ, R)

is abelian and if G(Φ, R) is simply-connected, G(Φ, R) = E(Φ, R).

Lemma 2.10. If a is an ideal of local ring R then

G(Φ, R, a) = T (Φ, R, a)E(Φ, a).

Proof. If a = R, the conclusion follows from Lemma 2.9. If a is a proper
ideal, it is contained in the Jacobson radical and we can apply Lemma 2.7.
Since T (Φ, R, a) normalises U(Φ, a) and both U(Φ, a) and U−(Φ, a) are con-
tained in E(Φ, a), the left hand side is contained in the right hand side. The
inverse inclusion is obvious.
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2.11. If a and b are elements of a group, we write ab = aba−1 and [a, b] =
aba−1b−1. In the sequel we make heavy use of the following commutator for-
mulae: [a, bc] = [a, b]b[a, c] and [ab, c] = a[b, c][a, c]. Most of the calculations
in the present paper are based on the Chevalley commutator formula

[xα(s), xβ(t)] =
∏

iα+jβ∈Φ

xiα+jβ(Nαβijs
itj),

where Nαβij are the structure constants which do not depend on s and t
(but for Φ = G2 may depend on the order of the roots in the product on the
right hand side). The following observation was made by Chevalley himself:
let α− pβ, . . . , α− β, α, α + β, . . . , α + qβ be the α-series of roots through
β, then Nαβ11 = ±(p + 1) and Nαβ12 = ±(p + 1)(p + 2)/2.

Let iΦ be the largest integer which may appear as i in a root iα+ jβ ∈ Φ
for all α, β ∈ Φ. Obviously iΦ = 1, 2 or 3, depending on whether Φ is simply
laced, doubly laced or triply laced. The following result makes the proof for
Φ 6= Cl slightly easier than for the symplectic case. Recall that A1 = C1

and B2 = C2 so that root systems of types A1 and B2 are symplectic. All
roots of A1 are long.

Lemma 2.12. Let β ∈ Φ and either Φ 6= Cl or β is short. Then there exist

two roots γ, δ ∈ Φ such that β = γ + δ and Nγδ11 = 1. If Φ = Cl, l ≥ 2, and

β is long, then there exist two roots γ, δ ∈ Φ such that either β = γ +2δ and

Nγδ12 = 1, or β = 2γ + δ and Nγδ21 = 1.

Proof. If β is long and Φ 6= Cl, then β can be embedded into a root system
of type A2 consisting of long roots. Take any two roots γ, δ ∈ Φ such that
γ + δ = β. Now let β be short. Then β can be embedded into a root system
of type B2 and G2. Let γ be a short root and δ be a long root such that
γ + δ = β. Finally if β is long and Φ = Cl, let γ be a long root and δ be a
short root such that γ + 2δ = β. In all cases γ − δ is not a root and thus
Nγδ1i = ±1, where i = 1 in the generic case and i = 2 in the exceptional
case. If Nγδ1i = −1 switch γ and δ.

Throughout the paper the letters k, l,m, n, p, q, r,K,L are used to de-
note non-negative integers, a, b, c, d, s, t denote elements of the ground ring
R, α, β, γ, δ denote roots in Φ and g, h, x, y, z, u, v denote elements of the
Chevalley group G(Φ, R).

3. First localisation

In this and next section we prove some technical results on conjugation

calculas of Chevalley groups. If t ∈ R, let
t

sk
R denote the additive subgroup

of Rs consisting of all quotients
ta

sk
, where a ∈ R. All calculations in the

present section take place in E(Φ, Rs). Thus, when we write something
like E(Φ, sptqR), or xα(spa), what we really mean, is E(Φ, Fs(s

ptqR)), or
xα(Fs(s

pa)), respectively, but we suppress Fs in our notation. However this
shouldn’t lead to a confusion since in this section we never refer to elements
or subgroups of G(Φ, R). Starting from Section 5, where elements of G(Φ, R)
and several of its localisations may appear in the same formula, we always
explicitly cite the corresponding localisation homomorphisms.
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Lemma 3.1. If p and k are given, there is a q such that

E1
(
Φ,

1

sk
R

)
E(Φ, sqt3R) ⊆ E(Φ, sptR).

Proof. Since by definition E(Φ, sqt3R) is generated by xβ(sqt3b), b ∈ R, it
suffices to show that there is a q such that

xα

( a

sk

)
xβ(sqt3b) ∈ E(Φ, sptR).

for any xα

( a

sk

)
∈ E1

(
Φ,

1

sk
R

)
and any xβ(sqt3b) ∈ E(Φ, sqt3R).

Case 1. Let α 6= −β and set q ≥ iΦk + p. By the Chevalley commutator
formula,

xα

( a

sk

)
xβ(sqtb)xα

(
−

a

sk

)
= xβ(sqtb)

∏

iα+jβ∈Φ

xiα+jβ(Nαβij

( a

sk

)i
(sqtb)j)

and a quick inspection shows that the right hand side of the above equality
is in E(Φ, sptR).

Case 2. Let α = −β and one of the following holds: β is short or Φ 6= Cl.
By Lemma 2.1 there exist roots γ and δ such that γ + δ = β and Nγδ11 = 1.
We set q = 2(iΦk + p) and decompose xβ(sqt2b) as follows:

xβ(sqt2b) = [xγ(sq/2t), xδ(s
q/2tb)]

∏
xiγ+jδ(−Nγδij(s

q/2t)i(sq/2tb)j),

where the product on the right hand side is taken over all roots iγ + jδ 6= β.

Conjugating this expression by xα

( a

sk

)
we get

xα

( a

sk

)
xβ(sqt2b) =

[xα

( a

sk

)
xγ(sq/2t),

xα(
a

sk
)
xδ(s

q/2tb)
]
×

∏ xα

( a

sk

)
xiγ+jδ

(
−Nγδij(s

q/2t)i(sq/2tb)j
)
.

Obviously γ, δ and all the roots iγ + jδ 6= β are distinct from −α and now
Case 1 shows that each term is in E(Φ, sptR).

Case 3. Let Φ = Cl and α = −β be a long root. By Lemma 2.1 there exist
roots γ and δ such that either γ + 2δ = β and Nγδ12 = 1, or 2γ + δ = β and
Nγδ21 = 1. We look at the first case, the second case is similar (alternatively,
if Nγδ12 = −1, one could change the sign of xγ(b) in the following formula
by xγ(−b)). We set q = 3(iΦk + p) and decompose xβ(sqt3b) as follows:

xβ(sqt3b) = [xγ(sq/3tb), xδ(s
q/3t)]xγ+δ(−Nγδ11s

2q/3t2b),

Again conjugating this expression by xα

( a

sk

)
and applying Case 1, we see

that each term on the right hand side is in E(Φ, sptR). This completes the
proof.

The following result immediately follows from Lemma 3.1 by an easy
induction on K. In its proof we denote by f ◦K the K-th iteration of the
function f , namely f ◦1 = f and f ◦n = f ◦ f◦n−1 where n ≥ 2.
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Lemma 3.2. If p, n, k and K are given, there are q and l such that

EK
(
Φ,

1

sk
R

)
E(Φ, sqtlR) ⊆ E(Φ, sptnR).

Proof. Consider the function f(x) = 3(iΦk+x) which appeared in the proof
of Lemma 3.1. Clearly l = 3Kn and q = f ◦K(p) satisfy the desired inclusion.

4. Second localisation

Here we fix two elements s, t ∈ R and consider localisation Rst ≡ (Rs)t ≡
(Rt)s.

Lemma 4.1. Let p, q, k,m are given. Then there are l and n such that

[
E1

(
Φ,

tl

sk
R

)
, E1

(
Φ,

sn

tm
R

)]
⊆ E(Φ, sptqR).

Proof. The proof follows the same pattern as in Lemma 3.1. Let xα

(tla

sk

)
∈

E1
(
Φ,

tl

sk
R

)
and xβ

(snb

tm
)
∈ E1

(
Φ,

sn

tm
R

)
.

Case 1. Let α 6= −β. Then

[
xα

( tl

sk
a
)
, xβ

( sn

tm
b
)]

=
∏

i,j>0

xiα+jβ

(( tl

sk
a
)i( sn

tm
b
)j

)
.

Let l ≥ iΦm + q and n ≥ iΦk + p. Clearly all factors on the right hand side
of the above formula are in E(Φ, sptqR).

Case 2. Let α = −β and one of the following holds: β is short or Φ 6= Cl.
By Lemma 2.1 there are roots γ and δ such that γ + δ = β and Nγδ11 = 1.
Increasing n, if necessary, we can assume that n is even. Thus we can

decompose xβ

( sn

tm
b
)

as follows

xβ

(snb

tm
)

=
[
xγ(sn/2), xδ

(sn/2b

tm
)] ∏

xiγ+jδ

(
−Nγδij(s

n/2)i
(sn/2

tm
b
)j

)
,

where the product on the right hand side is taken over all roots iγ + jδ 6= β.
Next, we consider the commutator formula

[
x, [y, z]

t∏

i=1

ui

]
= [x, y] y[x, z] yz[x, y−1] yzy−1

[x, z−1]

t∏

i=1

[y,z]
∏i−1

j=1 uj [x, ui],

and plug into this formula xα

( tl

sk
a
)

instead of x, xγ(sn/2) instead of y,

xδ

(sn/2b

tm
)

instead of z and the remaining factors on the right hand side of

the expression of xβ

(snb

tm
)

instead of ui. There are not more than 4 factors

in the right hand side of the Chevalley commutator formula anyway, one of
them is discarded from the very start, and in the conjugation we discard at
least one more. This means that the maximum length K of the exponent in
the elementary unipotents is at most 6. Now Lemma 3.2 and Case 1 imply
that l ≥ f ◦6(q) + mi2Φ and n ≥ 2(kiΦ + 36p) satisfy the required condition.
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Case 3. Let Φ = Cl and α = −β be a long root. By Lemma 2.1 there
exist roots γ and δ such that either γ +2δ = β and Nγδ12 = 1, or 2γ + δ = β
and Nγδ21 = 1. As in the proof of Lemma 3.1 we lose nothing by looking at
the first case. Increasing n if necessary we can assume that n is divisible by

3 and decompose xβ

(snb

tm
)

as follows:

xβ

(snb

tm
)

=
[
xγ

(sn/3b

tm
)
, xδ(s

n/3)
]
xγ+δ

(
−Nγδ11

s2n/3b

tm

)
.

Repeating the same arguments as in Case 2, and observing that now the
maximum length K of the exponent in the elementary unipotents is at most
4, we see that Lemma 3.2 and Case 1 imply that l ≥ f ◦4(q) + miΦ and
n ≥ 3(kiΦ + 34p) satisfy the required condition. Now comparing Case 1,
Case 2 and Case 3, it is clear that a bound, for example, l ≥ f ◦6(q) + mi2Φ
and n ≥ 3(kiΦ + 36p) satisfy the lemma.

Combining Lemma 4.1 and commutator formulae, we get the main result
of this section.

Theorem 4.2. Let p, q, k,m and K,L are given. Then there are l and n
such that [

EK
(
Φ,

tl

sk
R

)
, EL

(
Φ,

sn

tm
R

)]
⊆ E(Φ, sptqR).

Proof. The proof follows from Lemma 4.1 by an easy induction.

5. Patching

Fix an element s ∈ R, s 6= 0. In general if R has zero divisors, the
group homomorphism Fs : G(Φ, R) −→ G(Φ, Rs) induced by the localisa-
tion homomorphism R −→ Rs is not injective. There are several methods
to circumvent this difficulty. Our approach is based on the following obser-
vation, [3], Lemma 4.10.

Lemma 5.1. Suppose R is Noetherian and s ∈ R. Then there exists a nat-

ural number k such that the homomorphism Fs : G(Φ, R, skR) −→ G(Φ, Rs)
is injective.

Proof. The homomorphism Fs : G(Φ, R, skR) −→ G(Φ, Rs) is injective
whenever Fs : skR −→ Rs is injective. For i ≥ 0, let ai = AnnR(si) be
the annihilator of si in R. Since R is Noetherian, there exists a k such that
ak = ak+1 = . . . . If ska vanishes in Rs, then siska = 0 for some i. But since
ak+i = ak, already ska = 0 and thus skR injects in Rs.

Now we are all set to start a localisation and patching procedure. As in Sec-

tion 3 a fraction of the form
a

sk
is considered as an element of the localisation

Rs, unless specified otherwise.

Lemma 5.2. Fix an element s ∈ R, s 6= 0. Then for any k and q, there

exists an r such that for any a ∈ R, g ∈ G(Φ, R, srR) and any maximal

ideal M of R, there exist an element t ∈ R \M , and an l such that

[
xα

( tla

sk

)
, Fs(g)

]
∈ E(Φ, Fs(s

qR)) ⊆ G(Φ, Rs).
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Proof. By 2.3 one has G(Φ, R) = lim−→G(Φ, Ri), where the limit is taken over
all finitely generated subrings of R. Thus without loss of generality one may
assume that R is Noetherian (replace R by the ring generated by a, s and
the matrix entries of g in a faithful polynomial representation).

Let M be a maximal ideal of R. Then RM is a local ring and thus by
Lemma 2.10 FM (g) ∈ G(Φ, RM ) can be decomposed as FM (g) = uh where
h is an element of T (Φ, RM , srRM ), and u ∈ E(Φ, srRM ) ≤ G(Φ, RM ). But
since G(Φ, RM ) = lim−→G(Φ, Rt), over all t ∈ R \M , and the same holds for
E(Φ, srRM ), T (Φ, RM , srRM ), etc., we can find an element t ∈ R \M such
that already Ft(g) can be factored as Ft(g) = uh where h ∈ T (Φ, Rt, s

rRt)
and u ∈ E(Φ, Rt, s

rRt).
Now since R is assumed to be Noetherian, Rs is also Noetherian and by

Lemma 5.1 there exists an n such that the canonical homomorphism

Ft : G(Φ, Rs, t
nRs) −→ G(Φ, Rst)

is injective. Let l > n. Since xα

( tla

sk

)
∈ G(Φ, Rs, t

nRs), and G(Φ, Rs, t
nRs)

is normal in G(Φ, Rs), we have

x =
[
xα

(tla

sk

)
, Fs(g)

]
∈ G(Φ, Rs, t

nRs).

Consider the image Ft(x) ∈ G(Φ, Rst) of x under localisation with respect

to t. Since Ft is a homomorphism, one has Ft(x) = [Ft

(
xα

( tla

sk

))
, Fst(g)].

Now Fst(g) can be factored as Fst(g) = Fs(u)Fs(h) ∈ G(Φ, Rst). It follows
that

Ft(x) =
[
Ft

(
xα

( tla

sk

))
, Fs(u)Fs(h)

]
=

[
Ft

(
xα

( tla

sk

))
, Fs(u)

]
Fs(u)

[
Fs

(
xα

(tla

sk

))
, Fs(h)

]
.

For all cases apart from the case of a long root α in the adjoint symplectic
group of type Cl one could choose a decomposition Ft(g) = uh such that h
commutes with xα(∗). Therefore

Ft(x) =
[
Ft

(
xα

(tla

sk

))
, Fs(u)

]

Now by Theorem 4.2, we can choose a suitable r and l such that Ft(x) ∈
E(Φ, Fst(s

qtnR)) ≤ G(Φ, Rst).
We are left with the case of adjoint symplectic...
This means that Ft(x) can be presented as a product of elementary

transvections of the form

Ft(x) = xα1(Fst(s
qtna1)) . . . xαm(Fst(s

qtnam))

for some a1, . . . , am ∈ R. Form the product of elementary root unipotents

y = xα1(Fs(s
qtna1)) . . . xαm(Fs(s

qtnam)) ∈ E(Φ, Fs(s
qR)) ∩G(Φ, Rs, t

nRs).

Clearly Ft(y) = Ft(x) and since both x and y belong to G(Φ, Rs, t
nRs) and

by the very choice of n the restriction of Ft to G(Φ, Rs, t
nRs) is injective, it

follows that x = y ∈ E(Φ, sqR). This completes the proof.
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Remark. For all cases apart from the case of a long root α in the adjoint

symplectic group of type Cl one could choose a decomposition Ft(g) = hu
such that h commutes with xα(∗).

The following result is a broad generalisation of the normality of the
elementary subgroup.

Theorem 5.3. Fix an element s ∈ R, s 6= 0. Then for any p , K and k
there exists an r such that

[
EK

(
Φ,

1

sk
R

)
, Fs(G(Φ, R, srR))

]
⊆ E(Φ, Fs(s

pR)) ≤ G(Φ, Rs).

Proof. We shall show that there is an r such that

[
E1

(
Φ,

1

sk
R

)
, Fs(G(Φ, R, srR))

]
⊆ E(Φ, Fs(s

qR)),

where q = f ◦K−1(p) and f(x) = 3(iΦk + x) as in Lemma 3.2. Then by the
commutator formulae in 2.11,

[
EK

(
Φ,

1

sk
R

)
, Fs(G(Φ, R, srR))

]
⊆

EK−1
(
Φ,

1

sk
R

)
E(Φ, Fs(s

qR)),

and by Lemma 3.2

EK−1
(
Φ,

1

sk
R

)
E(Φ, Fs(s

qR)) ⊆ E(Φ, Fs(s
pR)),

which proves the theorem.

Therefore let xα

( a

sk

)
∈ E1

(
Φ,

1

sk
R

)
and Fs(g) ∈ Fs(G(Φ, R, srR)). By

Lemma 5.2, for k and 3(iΦk + q), there is a r such that for every maximal
ideal M ∈ Max(R) there exists an element tM ∈ A\M and a natural number
lM such that

[
xα

( tlMM a

sk

)
, Fs(g)

]
∈ E(Φ, Fs(s

3(iΦk+q)R)).(5.3.1)

Since the set {tlMM |M ∈ Max(R)} is not contained in any maximal ideal

of R, there exists its finite set {tl1
1 , · · · , tlrr } which generates R as an ideal.

Choose x1, . . . , xr ∈ R such that x1t
l1
1 + . . . + xrt

lr
r = 1. Then

[
xα

( a

sk

)
, Fs(g)

]
=

[
xα

(x1t
l1
1 a

sk

)
. . . xα

(xrt
lr
r a

sk

)
, Fs(g)

]
.

Using the commutator formula in 2.11, Lemma 3.1 and (5.3.1) we see that
[
xα

( a

sk

)
, Fs(g)

]
∈ E(Φ, Fs(s

qR)),

which concludes the proof.

In particular the contents of the present section gives a slightly shorter proof
of Taddei’s result [20]. In fact only a small fraction of our arguments would
be necessary to prove this result:

Corollary 5.4. Assume rk(Φ) ≥ 2. Then E(Φ, R) is a normal subgroup of

G(Φ, R).

Proof. Set s = 1 in the above theorem.
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6. Completion

In the present section we describe the last important ingredient of the

proof of the main theorem. Let s ∈ R. Recall that the s-completion R̂s of
the ring R is usually defined as the following inverse limit:

R̂s = lim←−R/snR, n ∈ N.

However this definition is not quite compatible with our purposes. Namely,
as always, to control zero divisors, we have to reduce to Noetherian rings
first. However if R = lim−→Ri is a direct limit of Noetherian rings, the canon-

ical homomorphism lim−→(R̂i)s −→ R̂s is in general neither surjective, nor
injective. This forces us to modify the definition of completion as follows:

R̃s = lim−→(R̂i)s,

where the limit is taken over all finitely generated subgrings Ri of R which

contain s. Let us denote by F̃s the canonical homomorphism R −→ R̃s. For

the case, when R is Noetherian F̃s = F̂s coincides with the inverse limit of
reduction homomorphisms πsn : R −→ R/snR

Theorem 6.1. Let R be a commutative ring, Φ an irreducible root system

of rank ≥ 2. Then
[
Fs

−1(E(Φ, Rs)), F̃
−1
s (E(Φ, R̃s)

]
⊆ E(Φ, R).

Proof. Let Ri be the inductive system of all finitely generated subrings of
R, containing s. By 2.3 one has

Fs
−1(E(Φ, Rs)) = lim−→Fs

−1(E(Φ, (Ri)s)),

F̃−1
s (E(Φ, R̃s)) = lim−→ F̂−1

s (E(Φ, (R̂i)s)),

and the proof reduces to the case when R is Noetherian, as in Lemma 5.2.

Let x ∈ Fs
−1(E(Φ, Rs)) and y ∈ F̂−1

s (E(Φ, (R̂i)s)). By definition the
condition on x means that Fs(x) ∈ EK(Φ, 1/skA) for some k and K. On
the other hand the condition on y means that πsn(y) ∈ E(Φ, R/snR) for all
n, or, what is the same, y ∈ E(Φ, R)G(Φ, R, snR). In other words, for any

n we can present y as a product y = uz, u ∈ E(Φ, R) and z ∈ G(Φ, R, snR).
As in the proof of Lemma 5.2 we can choose p such that the restriction

of the localisation homomorphism Fs to the principal congruence subgroup
G(Φ, R, spR) is injective. Now for k, K and p choose q as in Theorem 5.3.
Now [x, y] = [x, u]u[x, z]. The first commutator belongs to E(Φ, R) together
with u since E(Φ, R) is normal. Thus it remains only to prove that [x, z] ∈
E(Φ, R). By Theorem 5.3 the Fs([x, z]) ∈ E(Φ, Fs(s

q)). On the other hand,
since G(Φ, R, sqR) is normal, [x, z] ∈ G(Φ, R, sqR) exactly as the proof of
Lemma 5.2 we can conclude that [x, z] ∈ E(Φ, sqR).

7. Main theorem

To introduce the main new concept of the paper, we have to recall the
notion of Bass-Serre dimension of a ring. Let X be a topological space. The
dimension of X is the length n of the longest chain X0 $ X1 $ . . . $ Xn

of nonempty closed irreducible subsets Xi of X, ([6], § III). Define δ(X)
to be the smallest nonnegative integer d such that X is a finite union of
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irreducible Noetherian subspaces of dimension ≤ d. If there is no such d,
then by definition δ(X) =∞. Let R be a commutative ring. Let Max(R) be
the maximal spectrum of the ring R, endowed with Zariski topology. Then
the Bass-Serre dimension of R is δ(R) = δ(Max(R)). It is easy to see that
δ(R) = 0 if and only if R is a semi-local ring.

The following ‘induction lemma’ (see [3], Lemma 4.17) is the main instru-
ment to conduct induction on dimension.

Lemma 7.1. Suppose δ(R) is finite and Max(R) = X1 ∪ . . . ∪ Xr be a

decomposition into a union of irreducible Noetherian subspaces of dimension

≤ δ(R). If s ∈ R is such that for each k, 1 ≤ k ≤ r, the element s is not

contained in some member of Xk, then δ(R̃s) < δ(R).

Now we are all set to state and prove our principal result.

Definition 7.2. Let R be a commutative ring, Φ an irreducible root system

of rank ≥ 2. Define

SdG(Φ, R) =
⋂

R→A
δ(A)≤d

Ker
(
G(Φ, R) −→ G(Φ, A)/E(Φ, A)

)
.

Theorem 7.3. Let R be a commutative ring, Φ an irreducible root system

of rank ≥ 2 and G(Φ, R) the Chevalley group of Φ with coefficients in R.

Then G(Φ, R)/S0G(Φ, R) is abelian, the sequence

S0G(Φ, R) ≥ S1G(Φ, R) ≥ S2G(Φ, R) ≥ · · ·

is a descending central series in S0G(Φ, R) and SdG(Φ, R) = E(Φ, R) when-

ever δ(R) = d.

Proof. By 2.9, if A is a semi-local ring, then G(Φ, A)/E(Φ, A) is abelian.
Since δ(A) = 0 if and only if A is semi-local, one sees that the following
homomorphism is injective

G(Φ, R)/S0G(Φ, R) −→
∏

δ(A)=0

G(Φ, A)/E(Φ, A).

Thus it follows that G(Φ, R)/S0G(Φ, R) is an abelian group.
For the main part of the theorem, we proceed by induction on δ(R). The

theorem holds for zero dimensional rings. It suffices to show that for any
x ∈ S0G(Φ, R) and y ∈ SdG(Φ, R), the commutator [x, y] ∈ Sd+1G(Φ, R).
Since

G(Φ, R)/Sd+1G(Φ, R) −→
∏

R→A
δ(A)≤n+1

G(Φ, A)/E(Φ, A)

is a monomorphism, it is enough to prove the theorem for rings of dimension
d + 1. Hence Sd+1G(Φ, R) = E(Φ, R).

Let X1∪. . .∪Xr be a decomposition of Max(R) into irreducible Noetherian
subspaces of dimension ≤ δ(R). For any 1 ≤ i ≤ r, let Mi ∈ Xi. Take the
multiplicative set S = R \ (M1 ∪ · · · ∪ Mr). Since S−1R is a semi-local
ring, δ(lim−→Rs) = δ(S−1R) = 0, where the limit is taken over all s ∈ S.
Therefore there exists an element s ∈ S such that the Fs(x) ∈ E(Φ, Rs).
Thus x ∈ Fs

−1(E(Φ, Rs)). On the other hand by Lemma 7.1 for any s ∈ S,

δ(R̃s) < δ(R). Thus F̃s(y) ∈ E(Φ, R̃s). Now by Theorem 6.1 one has
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[x, y] ∈ E(Φ, R). This shows that S0G(Φ, R) ≥ S1G(Φ, R) ≥ · · · is a
descending central series. The fact that SdG(Φ, R) = E(Φ, R) whenever
δ(R) = d is immediate from the definition of SdG(Φ, R).

Corollary 7.4. Let rk(Φ) ≥ 2 and R be a finite-dimensional ring. Then the

quotient G(Φ, R)/E(Φ, R) is nilpotent-by-abelian. In particular it is solvable.

Proof. The corollary is an immediate consequence of Theorem 7.3.

Corollary 7.5. Let rk(Φ) ≥ 2 and R be a finite-dimensional ring. Then

K1(Φ, R) is nilpotent.

Proof. Since G is simply connected, for any semi-local ring R, G(Φ, R) =
E(Φ, R) and thus G(Φ, R) = S0G(Φ, R). Now the corollary follows from
Theorem 7.3.
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[21] J. Tits, Systèmes générateurs de groupes de congruence, C. R. Acad. Sci. Paris, Sér

A, 283, (1976), 693–695.



K1 OF CHEVALLEY GROUPS ARE NILPOTENT 17

[22] M. Tulenbaev, Schur multiplier of the group of elementary matrices of finite order,
J. Sov. Math., 17 (4), (1981), 2062–2067.

[23] L. Vaserstein, On normal subgroups of GLn over a ring, in Lecture Notes Math., Vol.
854, Springer, 1981, pp.456–465.

[24] L. Vaserstein, Unstable K1-theory of topological spaces is nilpotent, Contemp. Math.,
126 (1992), 193–196.

[25] N. Vavilov, Structure of Chevalley groups over commutative rings, Non-associative

algebras and related topics (Hiroshima, 1990 ), World Sci. Publishing, London et al.,
1991, 219–335.

[26] N. Vavilov, A third look at weight diagrams, Rend. Sem. Math. Univ. Padova, 104

(2), (2000), 1–50.
[27] N. Vavilov, E. Plotkin, Chevalley groups over commutative rings I: Elementary cal-

culations, Acta Applic. Math., 45, (1996), 73–113.

Department of Mathematics, University of Bielefeld, P. O. Box 100131,

33501 Bielefeld, Germany

E-mail address: rhazrat@mathematik.uni-bielefeld.de

Department of Mathematics and Mechanics, Saint-Petersburg State Uni-

versity, Saint-Petersburg 198904, Russia and Department of Mathematics,

Northwestern University, Evanston, IL 60208, USA

E-mail address: vavilov@math.nwu.edu


